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ABSTRACT

Integrated analysis of tissue histology with the genome-wide array
(e.g., OMIC) and clinical data have the potential for hypothesis gen-
eration and be prognostic. OMIC and clinical data are typically char-
acterized and summarized at the patient level while whole mount
histological sections are often heterogeneous in terms of nuclear
morphology and organization. In this paper, we propose a multi-
level framework for summarization and association of morphome-
tric data. At the lowest level, each nucleus is segmented and then
profiled with a multi-dimensional representation. At the intermedi-
ate level, cellular profiles are summarized within a local neighbor-
hood, and further clustered into subtypes. At the highest level, each
patient is represented by the composition of subtypes that are com-
puted from the intermediate level, and then integrated with OMIC
and outcome data for further analysis. The framework has been
applied to Glioblastoma multiforme (GBM) data from The Cancer
Genome Atlas (TCGA). Based on cellularity and nuclear size, four
subtypes have been identified at the intermediate level. Subsequent
multi-variate survival analysis indicates that the patient composition
of one of the subtypes, with extremely low cellularity and small nu-
cleus size, has a significantly higher hazard ratio. Further correla-
tion of this subtype with the molecular data reveals enrichment of (i)
STAT3 pathway and (ii) common regulators of PKC, TNF, AGT, and
PDGF.

Index Terms— Tumor architecture, Cox proportional-hazards
model, consensus clustering, molecular association

1. INTRODUCTION

The Cancer Genome Atlas (TCGA) is a national collaborative effort
that aims to identify molecular aberrations of tumors. This enter-
prise is also coupled with a collection of histology sections from
regions adjacent to the biopsies for diagnostics. While genome-wide
molecular data have the advantages of being structured, histological
sections are often unstructured and difficult to process. However,
histological sections provide rich phenotypic information, such as
tumor architecture and heterogeneity. Various techniques for utiliz-
ing histological sections for tumor grading and association with the
clinical outcomes was briefly summarized in [1].

Recent efforts on TCGA histological data analysis have focused
on normalizing for the batch effect [2], developing a computational
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pipeline to process whole mount histology sections [1, 3], and as-
sociating tumor histology with molecular data [1, 4]. This paper fo-
cuses on a new perspective for identifying molecular drivers of tumor
composition that can only be realized when processing a large cohort
of whole-mount tissue sections. In our processing pipeline, each
whole mount tissue section is decomposed into blocks of 1kx 1k
pixels. To a first approximation, these blocks serve as the bases for
intermediate-level analysis and are represented by probability dis-
tributions of morphometric indices aggregated from the cell-by-cell
analysis. Computed subtypes from these probability distributions at
the intermediate level serve as a “coding” procedure. Subsequently,
at the patient level, the tumor architecture is represented by the com-
position of subtypes that are computed from the intermediate level,
and then integrated with OMIC and clinical data for further analysis.

Organization of the rest of this paper are as follows: Section 2
describes the technical details of our approach; Section 3 provides
experimental results on integrated analysis of TCGA Glioblastoma
multiforme data; and Section 4 concludes the paper.

2. APPROACH

The proposed hierarchical approach includes analysis at three lev-
els: segmentation and feature extraction at the cellular level, feature
summarization and subtyping at the intermediate level, and survival
analysis and genomic association at the patient level.

2.1. Batch invariant analysis at the cellular level

One of the major challenges in histological image analysis is that
tissue sections originate from different laboratories and are subject
to a significant amount of technical variations. We have developed
a novel approach for nuclear segmentation in tissue sections, which
addresses the problem of technical and biological variations by in-
corporating information from manually annotated reference images
[2]. Segmented nuclei enable a multi-dimensional representation
that captures morphology and organization. These computed indices
are then mined for subtyping at the intermediate level.

2.2. Morphometric summarization and subtyping at the inter-
mediate level

For the purpose of intermediate level analysis, we divide each tissue
section into non-overlapping regions of 1000 x 1000 pixels at the
20X resolution, each of which is called a block. Each feature is
summarized as a probability distribution per block, and then it is
normalized across all tissues within a tumor type.



Morphometric subtyping of blocks across all tissue sections of
a given tumor type enables subsequent survival and compositional
analysis. However, several barriers need to be addressed for block-
level subtyping: (i) blocks in the background or at the border of
a tissue section may have undesired effects on subtyping; (ii) the
number of blocks per whole mount tissue section is quite large (e.g.,
2500); and (iii) whole mount tissue sections vary in size, as a result,
leading to an imbalanced number of blocks per section.

To address these issues, we have developed a computational
pipeline consisting of four major steps: 1) filtering each tissue sec-
tion to remove background and border blocks, 2) sampling each tis-
sue section to identify representative blocks, 3) clustering these rep-
resentative blocks across all tissue sections of a given tumor type,
and 4) labeling all remaining blocks based on clustering results of
the representative blocks. The details of each step is summarized
below.

1) In the filtering step, the background regions in a tissue section
are first detected at a very low resolution. Any block containing
the background region is then marked and removed from subsequent
analysis.

2) Sampling: Initially, k-means algorithm is applied to iden-
tify morphometric clusters within each whole mount tissue section.
The number of clusters & is selected proportional to the number of
blocks in the tissue section (e.g., 1% of the number of blocks). Sub-
sequently, the block, closest to the centroid of the cluster, is selected
as a representative block for that cluster. In other words, k blocks
are selected to represent each tissue section.

3) Clustering: Consensus clustering [5] is performed for identi-
fying subtypes/clusters across tissue sections of a given tumor type.
The input of consensus clustering includes blocks sampled from all
tissue sections in the previous step. Consensus clustering aggre-
gates consensus across multiple runs for a base clustering algorithm.
Moreover, it provides a visualization tool to explore the number of
clusters in the data, as well as assessing the stability of the discov-
ered clusters. To remove blocks that are not appropriately clustered,
we adapt a silhouette analysis method [6] that was used in [7]. The
silhouette value for each block, normalized between —1 and +1, is
a relative measure of how similar that block is to blocks in its own
cluster compared to blocks in other clusters. A silhouette value close
to +1 indicates that the block is appropriately clustered. Here, only
blocks with positive silhouette values were retained as the training
samples for the subsequent labeling step.

4) The final step is labeling (classifying), where each non-
representative block is assigned to a cluster through nearest-neighbor
classifier based on the training blocks.

2.3. Integrated analysis at the patient level

The results from the intermediate level subtyping enable a compo-
sitional representation at the patient level in which a patient has a
certain percentage of blocks for each subtype. Tumor compositional
covariates, at the patient level, can then be correlated with clinical
covariates or genomic data for integrated analysis. For example, one
of the questions aims to explore the relationship between the compo-
sitional covariates and survival distribution. In multivariate survival
analysis, this relationship is typically examined through a parametric
model [8]:

h(t) = exp (a + p1 X1 + B2 X2 + ... + B Xx) )

where h(t) is the hazard function, the X’s are the covariates, and
the constant « represents a kind of log-baseline hazard. Without

Fig. 1. Consensus clustering matrix of 146 TCGA patients with
GBM for cluster number N = 2to N = 5.
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Fig. 2. Consensus clustering CDF for cluster number N = 2 to
N =8.

specifying the baseline hazard function a(t) = log h0(¢), the Cox
proportional hazards (PH) model of

h(t) = hO(t) exp (B1.X1 + B2 X2 + ... + BeXk) )

can be estimated by the partial likelihood method.

The Cox PH model was used to explore the relationship between
the survival distribution and compositional covariates in the presence
of important clinical covariates (e.g., age at initial pathologic diag-
nosis):

h(t) = hO(t) exp(B1Cr + B2C2 + ...+
Bn-1Cn-1 + BnAge) 3)

In Equation (3), C; is the percentage of blocks belonging to the i-
th subtype in all tissue sections from the same patient. Only N —
1 compositional covariates are included in this model because the
Nth covariate is linearly dependent on the other N — 1 covariates.
In the fitted model, covariates with small p-values are identified as
statistically significant predictors of survival distribution.

With the identified histological covariate from the Cox PH
model, we can now infer molecular candidates that best correlate
with respect to the covariate. Pearson’s product moment correlation
coefficient was then computed between the histological covariate
and expression values of each probeset for all available patients.
The test statistic for assessing the significance of the correlation
follows a t distribution with n — 2 degrees of freedom, where n
is the number of patients. P-values for the two tailed t-test were
computed for all probesets, and then corrected for multiple testing
using a false discovery rate (FDR) [9].

3. EXPERIMENTAL RESULTS

We have applied the above approach to computed representation of
TCGA histology data of Glioblastoma multiforme (GBM), includ-
ing 446 tissue sections from 152 patients. All the tissue sections
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Fig. 3. Average equal-bin-width histograms of cellularity and nu-
clear size for each block-level subtype (N = 4).
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Fig. 4. Representative blocks for each morphometric subtype. Each
block is of 1000-by-1000 pixels at 20X resolution.

were included for nuclear segmentation and morphometric represen-
tation. However, tissue sections that contain large blurred areas, pen-
marked areas, folds, and staining artifacts were removed from further
analysis. The final dataset included 377 tissue sections from 146 pa-
tients. Since cellularity and nuclear size are important prognostic
indices in GBM, we decided to explore them first for morphometic
subtyping, survival analysis and genomic association. Gene expres-
sion values were estimated from the Affymetrix HT _HG —U133A
platform by Broad Institute.

3.1. Consensus clustering

Our representation for each block consists of a 25-bin equal proba-
bility histogram for nuclear size followed by a 25-bin equal probabil-
ity histogram for cellularity. We identified 162, 510 non-background
and non-border blocks through the filtering step, and selected 1, 582
representative blocks through the sampling step. We then use k-
means algorithms as the base for consensus clustering, where the
distance metric is the squared Euclidean distance. The procedure
was run for 200 iterations with a sampling rate of 0.8 on 1, 582 rep-
resentative blocks.

Consensus clustering matrices and CDFs (cumulative density
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Fig. 5. Heatmap of top 48 probesets (rows) that best correlate with
the subtypel composition, with FDR adjusted p-value < 0.02.

functions), shown in Figure 1 and Figure 2, respectively, reveal four
robust clusters (clustering stability significantly decreases for N >
4). We retained 1535 base blocks with positive silhouette as training
samples for labeling all other blocks. Figure 3 shows the average
equal-bin-width histograms of base blocks from each subtype. Four
subtypes exhibit significantly different signatures in cellularity, i.e.,
subtypes 1 to 4 correspond to extremely low, low, mid and high cel-
lularity, respectively. Similarly, subtypes 1 to 4 exhibits a monoton-
ically increasing trend in nuclear size. Examples of representative
blocks from each subtype are shown in Figure 4.

3.2. Survival analysis and genomic association

Block labeling enables a compositional representation of each pa-
tient in which the percentage of blocks labeled as one of the sub-
types. The relationship of the patient composition to the survival
distribution is then examined through the Cox PH model in Equation
(3). Tumor composition, in terms of computed subtypes and age, are
then modeled as independent prognostic factors for patients.

Survival analysis is implemented through the R survival pack-
age. As mentioned in Section 2.3, we cannot incorporate all 4 com-
positional covariates into the Cox PH model simultaneously because
they are linearly dependent. Instead, we choose 3 compositional co-
variates at a time for survival analysis. The results are summarized
in Table 1. It is shown that both age and C1 (Subtypel composition)
have consistently high hazard ratio with p-values < 0.1 (i.e., these
covariates are negatively correlated with survival). Block subtypel
has a histological signature of extremely low cellularity and small
nuclear size, as shown in Figures 3 and 4, which is similar to the
tumor signature of necrosis. This result is consistent with previous
literature which shows that the extent of necrosis is negatively corre-
lated with survival in GBM [10]. A heatmap of the 48 probesets that
significantly correlate with the subtypel composition, with FDR ad-
justed p-value < 0.02, are shown in Figure 5. These probesets were
mapped into genes for further analysis.

Having identified genes that significantly correlate with the
subtypel composition, we then performed pathway and subnetwork
enrichment analysis (see Figure 6). Pathway enrichment revealed
STAT3, which is known to be a master regulator in GBM [11, 12].
Subnetwork enrichment identified AGT, PKC, PDGF, CEBPA, and
TNF as the major hubs. Patients in this cohort received Temozolo-
mide (TMZ) as a part of their treatment, which interferes with DNA
replication through methylation. However, some tumor cells are able



Table 1. Multivariate survival analysis results by fitting the Cox PH model.

Covariates in the Cox PH model
C1+C2+C3+Age C1+C2+C4+Age C1+C3+C4+Age C2+C3+C4+Age

Hazard ratio  p-value | Hazardratio  p-value | Hazardratio  p-value | Hazard ratio  p-value
Cl 1.0184 0.0652 1.0168 0.0856 1.030 0.0631 NA NA
C2 0.9885 0.2342 0.9869 0.2771 NA NA 0.9706 0.0631
C3 1.0016 0.7303 NA NA 1.013 0.2771 0.9834 0.0856
C4 NA NA 0.9984 0.7303 1.012 0.2342 0.9819 0.0652
Age 1.0283 7.37e-5 1.0283 7.37e-5 1.028 7.37e-5 1.0283 7.37e-5

Fig. 6. Subnetwork enrichment analysis for Subtype 1 reveals AGT,
PDGF, PKC, TNF, and CEBPA as dominant regulators with p-value
of less than 0.05.

to repair the damage by expressing AGT. In GBM, AGT maintains
normal function of vasculature [13] and cellular concentration of
this enzyme is a primary determinant of the cytotoxicity of TMZ
[14] in vitro. PKC (Protein Kinase C) is well established in cancer
signaling and therapy as it is involved in proliferation, migration,
and malignant transformation [15], and its isozyme has been sug-
gested for chemotherapeutic targets in GBM [16]. TNF refers to
a group of cytokines that induce proliferation, and inflammation
and apoptosis depending upon the adaptor proteins. TNF is part of
the anti-tumor strategy in which human glioma cell lines express
its proteins. Manipulation of these proteins has shown to induce
apoptosis in glioma cells [17]. Other hubs are highly ranked in the
TCGA gene tracker.

4. CONCLUSION

In this paper, we proposed a multilevel framework for summariza-
tion of histological data and subsequent integrated analysis. Instead
of directly summarizing cellular features at the patient level, we
introduced an intermediate analysis level that summarizes cellular
features within a local neighborhood and provide a compositional
representation as patient level summarization. We then applied the
proposed framework to TCGA Glioblastoma multiforme data for an
integrated analysis. Our analysis indicates that one of the computed
subtypes is prognostic and the molecular drivers, that correlate with
compositional analysis of this subtype, are consistent with those in
the GBM literature.
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